3.6 Oscillating systems

Free oscillations

Tice oscillations				
Differential equation	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\gamma \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x = 0$	(3.196)	$\begin{bmatrix} x \\ t \\ \gamma \end{bmatrix}$	oscillating variable time damping factor (per unit mass) undamped angular frequency
Underdamped solution $(\gamma < \omega_0)$	$x = Ae^{-\gamma t}\cos(\omega t + \phi)$ where $\omega = (\omega_0^2 - \gamma^2)^{1/2}$	(3.197) (3.198)	A ϕ ω	amplitude constant phase constant angular eigenfrequency
Critically damped solution $(\gamma = \omega_0)$	$x = \mathrm{e}^{-\gamma t} (A_1 + A_2 t)$	(3.199)	A_i	amplitude constants
Overdamped solution $(\gamma > \omega_0)$	$x = e^{-\gamma t} (A_1 e^{qt} + A_2 e^{-qt})$ where $q = (\gamma^2 - \omega_0^2)^{1/2}$	(3.200) (3.201)		
Logarithmic decrement ^a	$\Delta = \ln \frac{a_n}{a_{n+1}} = \frac{2\pi\gamma}{\omega}$	(3.202)	Δa_n	logarithmic decrement nth displacement maximum
Quality factor	$Q = \frac{\omega_0}{2\gamma} \left[\simeq \frac{\pi}{\Delta} \text{if} Q \gg 1 \right]$	(3.203)	Q	quality factor

^aThe decrement is usually the ratio of successive displacement maxima but is sometimes taken as the ratio of successive displacement extrema, reducing Δ by a factor of 2. Logarithms are sometimes taken to base 10, introducing a further factor of \log_{10} e.

Forced oscillations

Differential equation	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\gamma \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x = F_0 \mathrm{e}^{\mathrm{i}\omega_{\mathrm{f}}t}$	(3.204)	x t y	oscillating variable time damping factor (per unit mass)
Steady- state solution ^a	$x = Ae^{\mathbf{i}(\omega_{f}t - \phi)}, \text{ where}$ $A = F_{0}[(\omega_{0}^{2} - \omega_{f}^{2})^{2} + (2\gamma\omega_{f})^{2}]^{-1/2}$ $\simeq \frac{F_{0}/(2\omega_{0})}{[(\omega_{0} - \omega_{f})^{2} + \gamma^{2}]^{1/2}} (\gamma \ll \omega_{f})$ $\tan \phi = \frac{2\gamma\omega_{f}}{\omega_{0}^{2} - \omega_{f}^{2}}$	(3.205) (3.206) (3.207) (3.208)	ω_{f} A	undamped angular frequency force amplitude (per unit mass) forcing angular frequency amplitude phase lag of response behind driving force
Amplitude resonance ^b	$\omega_{\rm ar}^2 = \omega_0^2 - 2\gamma^2$	(3.209)	$\omega_{\rm ar}$	amplitude resonant forcing angular frequency
Velocity resonance ^c	$\omega_{\rm vr} = \omega_0$	(3.210)	$\omega_{ m vr}$	velocity resonant forcing angular frequency
Quality factor	$Q = \frac{\omega_0}{2\gamma}$	(3.211)	Q	quality factor
Impedance	$Z = 2\gamma + \mathbf{i} \frac{\omega_{\rm f}^2 - \omega_0^2}{\omega_{\rm f}}$	(3.212)	Z	impedance (per unit mass)

^aExcluding the free oscillation terms.

^bForcing frequency for maximum displacement.

^cForcing frequency for maximum velocity. Note $\phi = \pi/2$ at this frequency.